Muted precipitation increase in global warming simulations: A surface evaporation perspective
نویسندگان
چکیده
[1] Atmospheric moisture content is expected to rise in response to global warming, but climate models predict a much slower rate of precipitation increase. This muted response of the hydrological cycle is investigated from a surface evaporation perspective, using a multimodel ensemble of simulations under the A1B forcing scenario. A 90-year analysis of surface evaporation based on a standard bulk formula reveals that the following atmospheric changes act to slow down the increase in surface evaporation over ice-free oceans: surface relative humidity increases by 1.0%, surface stability, as measured by air-sea temperature difference, increases by 0.2 K, and surface wind speed decreases by 0.02 m/s. As a result of these changes, surface evaporation increases by only 2% per Kelvin of surface warming, rather than the 7%/K rate simulated for atmospheric moisture. The increased surface stability and relative humidity are robust across models. The former is nearly uniform over ice-free oceans while the latter features a subtropical peak on either side of the equator. While relative humidity changes are positive almost everywhere in a thin surface layer, changes aloft show positive trends in the deep tropics and negative ones in the subtropics. The surface-trapped structure suggests the following mechanism: owing to its thermal inertia, the ocean lags behind the atmospheric warming, and this retarding effect causes an increase in surface stability and relative humidity, analogously to advection fog. Our results call for observational efforts to monitor and detect changes in surface relative humidity and stability over the world ocean.
منابع مشابه
Increase of global monsoon area and precipitation under global warming: A robust signal?
[1] Monsoons, the most energetic tropical climate system, exert a great social and economic impact upon billions of people around the world. The global monsoon precipitation had an increasing trend over the past three decades. Whether or not this increasing trend will continue in the 21st century is investigated, based on simulations of three high-resolution atmospheric general circulation mode...
متن کاملGlobal Warming Pattern Formation: Sea Surface Temperature and Rainfall
Spatial variations in sea surface temperature (SST) and rainfall changes over the tropics are investigated based on ensemble simulations for the first half of the twenty-first century under the greenhouse gas (GHG) emission scenario A1B with coupled ocean–atmosphere general circulation models of the Geophysical Fluid Dynamics Laboratory (GFDL) and National Center for Atmospheric Research (NCAR)...
متن کاملHow much more rain will global warming bring?
Climate models and satellite observations both indicate that the total amount of water in the atmosphere will increase at a rate of 7% per kelvin of surface warming. However, the climate models predict that global precipitation will increase at a much slower rate of 1 to 3% per kelvin. A recent analysis of satellite observations does not support this prediction of a muted response of precipitat...
متن کاملHow Much Will Precipitation Increase With Global Warming?
during the 1970s made possible the observation of the seasonally shifting patterns of global precipitation. It was not until recently, however, that the record could be considered long enough to investigate longer-term trends and the relationship between global precipitation and global warming. Using data from the Special Sensor Microwave Imager (SSM/I) instrument, Wentz et al. [2007] reported ...
متن کاملResponses of terrestrial aridity to global warming
The dryness of terrestrial climate can be measured by the ratio of annual precipitation (P) to potential evapotranspiration (PET), where the latter represents the evaporative demand of the atmosphere, which depends on the surface air temperature, relative humidity, wind speed, and available energy. This study examines how the terrestrial mean aridity responds to global warming in terms of P/PET...
متن کامل